Codes that matter for Earthing Design Standards in Railways

Codes that matter for Earthing Design Standards in Railways

Earthing Design Standards

For the past few years, GreyMatters has been fortunate enough to support the rail electrification and upgrade programmes across the UK for Earthing Design. And maintaining a consistent approach across a building programme of this scale can be a massive engineering headache for all design teams concerned. Especially, when Earthing Design Standards touches on so many disciplines along the way. From civils, OLE (Overhead line equipment), signals, EMC, 3rd parties, ecologies, geophysical as well as the more obvious general E&B (earthing and bonding).

earthing Design standards

The one thing that provides a form of “glue” to help keep the various disciplines and schemes on track (excuse the pun) are the codes of practice or earthing design standards and their correct interpretation. I say ‘interpretation‘ because these codes cannot account for all the scenarios encountered.  Invariably, there are the not-so-common, or dam right awkward scenarios that no-one has foreseen. These get everyone scratching their heads on how to resolve.

Also, an electrification scheme has to consider the interface between two sectors, i.e. rail and the energy sectors.  Both are regulated environments in the UK / EU, and both have subtly different requirements and focus.

Top tier Earthing Design standards

In the UK, the fundamental standards for Railways named below;

  • BS EN 50122: Railway applications — Fixed installations — Electrical safety, earthing and the return circuit.  In 3 parts.
  • BS EN 50522: Earthing of power installations exceeding 1 kV a.c.

Network Rail has a very talented technical engineering team. Who have studied/developed and codified specific practices to supplement and to help bridge the two sectors. These Rail specific supplemental standards support the top tier standards. And can be many in number as well as detailed in content to provide the necessary design guidance required to meet the expectation and achieve compliance during construction.  n.b. You’ll excuse me if I don’t include them here as that would make life too easy for competitors.

Problem sites that don’t play ball

One of the most common challenges for the current / planned electrification schemes is:

The size and shape of footprint available for track sectioning cabins and substations

Earthing Design
Containment of a large Fault Current likened to pouring a litre of water into a small glass.

You can imagine, the land owned by the rail company is usually restricted to a corridor to accommodate the rail network and associated infrastructure.  So, the typical rail substation tends to be located in a long and elongated patch of land within or near, this corridor.

This situation means if the geology is mildly non-conductive. Trying to contain and control a fault current can be like trying to “squeeze a Quart into a Pint Pot”. As the image above, i.e. leading to spillage of energy into areas where you do not want it to go.

So, the Earthing Design lead really will have to start earning their fee as there are many safety concerns to factor in that are unique to Rail and can make construction a real challenge.

Thankfully, with over 27 years experience, armed with the top 1% equipment and design tools, there hasn’t been anything that I haven’t seen sometime in the past and been able to solve yet!

Some common Earthing Design challenges for Rail are:

  • Size and shape of the footprint
  • Relatively high fault level to control (encroachment, hot site)
  • Elongated conductive structures (rails, etc.) that do a great job of transferring hazardous voltages, (including those from lightning), if not careful
  • Public accessibility
  • Track formation doesn’t overly help earth leakage
  • Theft
  • Stray current and enhanced corrosion
  • The interface between AC and DC traction systems

Why not drop us a line or chat with our team?

Stay up to date with Earthing Rail Standards here.

more insights

Ian getting ready
Soil Resistivity

Soil Resistivity Testing – Common Mistakes

We take a look at soil resistivity and provide practical advice on what is ground soil resistivity, why we measure it and these common mistakes when Soil Resistivity Testing: